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Community network analysis derived from molecular dynamics
simulations is used to identify and compare the signaling pathways
in a bacterial glutamyl-tRNA synthetase (GluRS):tRNAGlu and an
archaeal leucyl-tRNA synthetase (LeuRS):tRNALeu complex. Al-
though the 2 class I synthetases have remarkably different inter-
actions with their cognate tRNAs, the allosteric networks for
charging tRNA with the correct amino acid display considerable
similarities. A dynamic contact map defines the edges connecting
nodes (amino acids and nucleotides) in the physical network whose
overall topology is presented as a network of communities, local
substructures that are highly intraconnected, but loosely intercon-
nected. Whereas nodes within a single community can communi-
cate through many alternate pathways, the communication be-
tween monomers in different communities has to take place
through a smaller number of critical edges or interactions. Consis-
tent with this analysis, there are a large number of suboptimal
paths that can be used for communication between the identity
elements on the tRNAs and the catalytic site in the aaRS:tRNA
complexes. Residues and nucleotides in the majority of pathways
for intercommunity signal transmission are evolutionarily con-
served and are predicted to be important for allosteric signaling.
The same monomers are also found in a majority of the suboptimal
paths. Modifying these residues or nucleotides has a large effect on
the communication pathways in the protein:RNA complex consis-
tent with kinetic data.

aminoacyl-tRNA synthetase � communication networks � community �
suboptimal paths

In the modern world of translation, aminoacyl-tRNA syntheta-
ses (aaRSs) help maintain the genetic code by charging tRNA

with its cognate amino acid. The formation of aminoacyl-tRNAs
(aa-tRNAs) proceeds via a 2-step process. In the first step, the
amino acid or its precursor reacts with ATP to form the activated
aminoacyl-adenylate (aa-AMP) within the catalytic site, and in
the second, or charging step, the amino acid is transferred to the
3� end of the cognate tRNA. The aaRSs distinguish a particular
set of tRNA species from a pool of many tRNA molecules in the
cell through interactions with a group of nucleotides called the
identity elements. For most aaRSs, the tRNA identity elements
include the anticodon bases 34–36 and the discriminator base 73
in addition to other locations that are specificity dependent. In
a few cases like leucyl-RS (LeuRS) in archaea, the synthetase has
acquired additional domains that interact with identity elements
on the variable arm of the tRNA instead of interacting with the
anticodon (1).

Upon binding, the tRNA induces conformational changes
throughout the protein:tRNA interface and within the catalytic
site (2). Based on biochemical studies, the charging reaction is
stimulated by interactions between the synthetase and the tRNA
identity elements, which are mostly located far away from the site
of amino acid attachment. Such long distance coupling is at the
very heart of allosteric regulation (3). Experimental and com-
putational studies of many regulatory complexes support the
current view that they possess the intrinsic ability to undergo
conformational transitions, conferred by the 3-dimensional net-
work of interresidue interactions (4–8). The pathways of signal
transduction favored by the network of interresidue contacts and
the role conservation plays in these pathways remain to be

established. This study demonstrates that nucleotides in the
tRNA as well as residues within the aaRS are essential for
information transduction in the protein:RNA complex. Al-
though contact maps based on the static structure of the complex
give an initial approximation to the physical communication
network, the inclusion of dynamical correlations provides a more
accurate picture of the network topology and approximates the
strength of the allosteric signal that can be related to experi-
mental observations.

For a given fold topology, contact maps generate unweighted
networks representing the residue connectivity (9). The contri-
bution of each residue or node to the characteristic path length
(CPL), defined as an average of the shortest path length between
all pairs of nodes in the network, provides an estimate of the
effect of node connectivity on communication pathways in a
protein. Conserved residues that greatly affect the CPL upon
removal have been hypothesized to be important for allosteric
signal transmission (10). Snapshots from a short simulation of a
modeled MetRS:tRNA complex indicated that the shortest path
between protein residues interacting with the anticodon and the
adenylate binding site was sensitive to conformational changes in
the protein (11), but the tRNA and contacts with other identity
elements on the tRNA were neglected in their study of the signal
transmission. Although the shortest path analysis identifies several
nodes, the contribution of these nodes to communication in protein
networks has not been examined, with few exceptions (12).

If there are multiple communication paths nearly equal in
length, then not all residues along these paths need be consid-
ered as important for allostery. Instead, only residues or inter-
actions that occur in the highest number of suboptimal pathways
need to be conserved to guarantee an effective pathway for
allosteric communication in the complex. In this work, we
analyze entire protein:tRNA networks ‘‘weighted’’ by correla-
tion data from long (20 ns) molecular dynamics (MD) simula-
tions of the aaRS:tRNA complex in 2 functional states: before
and after tRNA aminoacylation. The correlation, Cij, in motion
between nodes i and j defines information transfer between the
nodes because motion of monomer (residue or nucleotide) i can
be used to predict the direction of motion of monomer j. For all
states, we determine the shortest path for communication along
with the ensemble of suboptimal paths from all identity elements
on the tRNA to the active site of the synthetase. The time-
averaged connectivity of the nodes is used to identify the
substructure or communities in the network. The optimal com-
munity distribution is calculated by using the Girvan–Newman
algorithm (13), which has no free parameters, in contrast to
other approaches (12, 14). The community description allows us
to compare the topology and modularity of networks for the
protein:tRNA complexes for 2 diverse class I aaRSs. The con-
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served monomers involved in communication between commu-
nities are the critical nodes for communication within the
network and are shown to occur in a majority of the suboptimal
paths between the identity elements and the site of amino acid
transfer at the 3� end of the tRNA.

The aaRSs are multidomain proteins that are divided into 2
classes based on the homology of their catalytic domain that
catalyzes both steps of the aminoacylation reaction. Most of the
class I aaRSs are monomeric enzymes, whereas the class II aaRS
enzymes form dimers or tetramers in solution. Because of the
smaller size and simpler nature of the functional aaRS:tRNA
complex in the class I aaRS family, we investigate allostery in
these complexes. The different modes of tRNA recognition by
GluRS and LeuRS offer insight into the evolution of the
allosteric network upon changes in specificity.

Results and Discussion
All members of the class I aaRS family have homologous
catalytic domains formed from the Rossmann fold and a spec-
ificity-dependent connective polypeptide 1 (CP1) insertion as
shown in Fig. S1. The evolution of different (tRNA and amino
acid) specificities in the aaRSs proceeded via the acquisition of
additional domains, which in some cases resulted in different
patterns of interaction between the tRNA and aaRS. In GluRS
and LeuRS, the catalytic domain is followed by �-helical and
C-terminus domains (CTD) that interact with the tRNA. In
GluRS, the CTD interacts with the anticodon loop and is called
the anticodon-binding (ACB) domain, whereas in archaeal
LeuRS, residues in the CTD form contacts with the long variable
arm and the elbow region of the tRNA. GluRS and LeuRS
interact differently with their cognate tRNA molecules, resulting
in vastly different identity elements. Although GluRS makes
contact with the identity elements listed in Table 1 on the
acceptor stem, GG or D arm, and the anticodon loop of
tRNAGlu, the identity elements of the archaeal LeuRS are in the
long variable arm and discriminator base of the tRNA (see Table
S1). The bacterial GluRS involved in the direct pathway for
glutamate aminoacylation (discriminate GluRS or D-GluRS) is

investigated in this work and later compared with the network
for the archaeal version of LeuRS.

Correlation Analysis. The transmission of an allosteric signal
within the protein:RNA complex should couple motion between
active site residues and regions in the protein interacting with
identity elements on the tRNA. The Rossmann fold forms the
active site for the aminoacylation reaction and interacts with
identity elements on the acceptor stem and the GG arm. In Fig.
1, the degree of coupled motion in the GluRS:tRNAGlu:Glu-
AMP (pretransfer) complex was measured by normalizing the
cross correlation matrix of atomic fluctuations over the length of
the simulation.

Besides local correlations, there is coupling between distant
parts of the complex shown as boxed regions in Fig. 1. Motion
of the �-helical ACB domain is anticorrelated to that of the
Rossmann fold. Similarly, the dynamics of the CP1 insertion are
coupled to the dynamics of the Rossmann fold, the 4-helix
junction (4HJ), the ACB domain, and the anticodon loop. Most
significantly, the C-terminus half of the Rossmann fold is
dynamically correlated to the motion of the anticodon, despite
these regions being 55 Å apart. Although the longer simulations
provided a more pronounced correlation map, the trends are
similar to those observed in shorter simulations of the
MetRS:tRNAMet complex (11). The simulation of the archaeal
LeuRS:tRNALeu complex displays similar coupled motion be-
tween distant regions in the complex as shown in Fig. S2. The
long-range coordinated motion for the pretransfer complex is
also observed in the 3 most dominant principal components of
the MD simulation (Figs. S3 and S4).

Although correlation analysis provides evidence for the pres-
ence of allostery, the communication pathways between various
regions of the complex cannot be elucidated by using solely these
methods. The pathways and the residues/nucleotides in the
protein:RNA complex critical for communication have been
determined from network methods as described below.

Each residue and nucleotide in the protein:RNA complex
represents a node in the network. Any 2 nonneighboring mono-
mers are connected by an edge if they are in contact during a
majority of the simulation. In the dynamic network, the edges are
weighted by the correlation values from the simulation so that
the distance between 2 nodes connected by an edge reduces as
the correlation (or energy of interaction) between the monomers
increases.

Table 1. The shortest distance (Di,A76
0 ) and number of suboptimal

paths (Nsop) from each identity element to A76 in the networks
representing the pre- and posttransfer states

Source

Pretransfer state Posttransfer states

Di,A76
0 Nsop Di,A76

0 Nsop

G1 4.31 3 13.31 (—) 2 (—)
C72 1.43 3 9.68 (—) 2 (—)
G2 3.29 31 7.45 (5.55) 3 (11)
U71 1.49 3 6.15 (3.45) 5 (11)
C4 3.04 85 8.00 (2.51) 29 (79)
G69 4.19 75 5.95 (2.90) 1 (75)
U11 4.88 (4.91) 209 8.89 (3.13) 30 (85)
A24 4.0 (4.11) 177 7.80 (4.00) 40 (238)
U13 3.24 (5.19) 104 6.23 (2.77) 29 (81)
G22 4.14 (5.03) 105 6.74 (4.11) 29 (100)
A46 5.13 (6.02) 106 8.14 (3.71) 36 (88)
C34 6.45 315 11.05 (5.21) 83 (212)
U35 5.48 196 9.95 (4.56) 84 (177)
C36 5.10 204 10.85 (4.53) 60 (171)
A37 4.71 230 9.73 (4.14) 60 (215)

The values in parentheses in the pretransfer state (GluRS:tRNAGlu:Glu-AMP)
denote the distance of the identity element from A76 in the modified system.
The values in the posttransfer network denote the shortest distance and
number of suboptimal paths for the posttransfer network in 2 states: GluRS:
Glu-tRNAGlu:AMP and GluRS:Glu-tRNAGlu:HAMP (in parentheses).
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Fig. 1. Correlation analysis (Cij) of the motion during a 20-ns MD simulation
of the GluRS complex. Monomers with highly (anti)correlated motion are
orange or red (blue). Distant (�15Å) regions displaying high degree of (anti-
)correlation are marked in white rectangles (below)above the diagonal.
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Characteristic Path Length Analysis. Allosteric signal transmission
in the aaRS:tRNA complex involves communication of dynam-
ical information within both macromolecules. The interface of
the protein:RNA complex initiates the signal for amino acid
transfer to the tRNA. To identify nucleotides that have the
largest effect on communication across the interface, the change
in CPL is calculated upon removing all contacts from a given
interface nucleotide to any residue on the protein while keeping
all other contacts in the network intact. Nucleotides that signif-
icantly increase the edge CPL in Fig. 2 are either at or close to
G26 or the identity elements located on the acceptor stem, GG
arm, and the anticodon arm. Besides physically connecting the
GG and anticodon arms, nucleotides 25 and 26 are important for
coordinating communication between the identity elements in
these 2 arms.

Change in CPL upon the complete removal of a node is a
measure of its effect on communication within the entire
network. Although several residues and nucleotides increase the
CPL upon their removal from the pretransfer network (see Figs.
S5 and S6 and Table S2), the results are difficult to interpret
because this global metric is sensitive to the geometry of the
network, and it underestimates the contribution of nodes at the
periphery of the network.

Community Analysis of tRNA:GluRS. Variations in the connectivity
of the network give rise to modules or local communities in the
network. Analysis of the communication between these local
substructures provides additional insight not readily available
through the global CPL measurement. Nodes belonging to the
same community are more strongly and densely interconnected
to one another and have weaker connections to other nodes in
the network. By definition, nodes in the same community can
communicate with one another relatively easily through multiple
routes. However, there are comparatively few edges involved in
communication between communities, and the monomers in-
volved in this communication form a bottleneck for information
transfer in the network.

The Girvan–Newman algorithm splits the network of
GluRS:tRNAGlu:Glu-AMP into 13 communities as shown in
Table S3 and Fig. 3. These communities do not necessarily
correspond to the domain definitions of the protein and the
RNA. Monomers in the same community in Fig. 3 are local in
structure but can be distant in sequence. Rearranging the
cross-correlation map by communities in Fig. S7 clearly shows
that monomers within the same community are highly corre-
lated. Most of the interface nucleotides (including the identity
elements) are found in the same community as their protein
interaction partners. Of the 13 communities, there are 3 com-
munities composed exclusively of tRNA nucleotides, 8 commu-
nities including a combination of tRNA and protein monomers,

and 2 communities containing only protein residues. The main
signal for allostery is assumed to travel from the communities
with the various identity elements, i.e., communities C-3, C-4
(anticodon loop), C-8 (GG arm), C-1, C-6, and C-7 (acceptor
stem), to the active site of the aaRS, which is at the interface of
C-6 (A76) and C-2 (adenylate Glu-AMP). The nodes represent-
ing nucleotides U20A and U59 are not connected to any other
nodes in the network, form isolated communities of their own,
and are not shown in Fig. 3C. If nearest-neighbor interactions
were allowed in this network, both nucleotides would be merged
into the community containing their neighboring nucleotides (C-9).

The flow of information in the physical network of the
protein:RNA complex is traced by using the coarse-grained
picture formed by the network of communities shown in Fig. 3C.
The betweenness of an edge, defined as the number of shortest
paths that pass through the edge in the network, is used to
measure the importance of the edge for communication within
the network. The width of an edge connecting 2 communities in
the community network is proportional to the sum of between-
ness of edges connecting them in the protein:RNA network. The
adenylate/Rossman fold community (C-2) is central to the
information flow, connecting the 4HJ and ACB domain on one
side to the catalytic domain (C-1, C-7, and C-11) and the tRNA
region (C-8) on the other. The communities spanning the GG
arm and the anticodon arm, C-8 and C-10, are weakly connected
and suggest that information flows through the tRNA in addition
to the synthetase. This is supported by the study of the tRNAVal

split into 2 minihelices where the anticodon minihelix stimulates
aminoacylation of the acceptor minihelix in ValRS (15). The
monomers that occur in a majority of the (shortest) pathways for
intercommunity information transfer are listed in Table S4 and
are predicted to be critical for allostery. A large number of
conserved residues close to the Glu-AMP binding site are
important for intercommunity communication (Pro 8, Tyr 20, Ile
56, Pro 228, His 232, and Pro 234). In addition, conserved
protein residues (Gly 274 and Phe 305) close to or interacting
with identity elements on the GG arm (U11 and A14) are also
predicted to be necessary for allosteric signal transfer. Leu 359
was identified as important for communication between the 4HJ
and the ACB domain, and although it is not highly conserved, its
neighbor Arg 358 has been shown to play a crucial role in
anticodon recognition by GluRS and its ability to distinguish
tRNAGln and tRNAGlu. Comparison of the monomers identified
by the CPL and community analyses of dynamic and static
protein:RNA networks reveals a major difference between the
methods. In general, the community analysis identifies far fewer
critical monomers than the CPL analysis of the dynamic and
static protein:RNA networks (25 versus 54 and 47, respectively).
The CPL analysis selects nodes that occur in a large number of
paths for both intra- and intercommunity communication.
Nodes within the same community are highly interconnected
and can communicate through a large number of paths with a
small difference in distance. Hence, the nodes that are important
for intracommunity communication have a smaller effect on
communication throughout the network, as evidenced by their
lower conservation. Based on Tables S2 and S4, the set of
monomers identified from the community analysis has 85.8%
conservation on average whereas those identified by the CPL
analyses of the dynamic and static networks have a mean
conservation of 67.6% and 63.4%, respectively.

Modifications Alter the Network. Mutation of the identity element
U13 in the GG arm reduces the catalytic efficiency of D-GluRS
to aminoacylate its cognate tRNA by a factor of 50 in Escherichia
coli (16). Computationally, without carrying out another MD
simulation, this modification was captured by weakening the
edges between U13 and any residue on the synthetase in the
network analysis. Weakening the interface edges of U13 or its
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neighbor A14 to the protein leads to significant repartitioning
among the community network (Fig. S8). These edges are
removed early in the Girvan–Newman algorithm and hence have
the largest overall effect on the community node assignment.
The community network after reducing the correlation between
U13 and GluRS by one-half is shown in Fig. 3D. As measured by
the community repartition difference, 65% of the node pairs
remain grouped in the same community, whereas 35% of the
node pairs are split into separate communities. The boundaries
of all of the communities vary slightly from the community
distribution in the wild-type network. The most significant
changes occur close to C-8 where a new community C-12
contains most of the strong contacts that C-10 previously formed
with C-3 (U11 and C25) and C-8 (C25 and Trp 312). In the
modified network, C-8 acquires residues and nucleotide C12
from C-3 and C-7, and, as a result, the edge between C-7 and C-3
is replaced with the edge between C-8 and C-3. A similar study
for the computational alanine scan of protein residues at the
interface is shown in Fig. S9.

The increase in the shortest distance (Table 1) and CPL
(Fig. 2) (CPLwt � CPLmut) upon complete removal of the
interface contacts of U13 corresponds to a lower experimentally
determined efficiency [ (kcat/KM)wt �� (kcat/KM)mut] (16) and
weaker allosteric signal in the mutated complex. The overall sum
of shortest distances between the identity elements and A76 in
the modified network increases by 3.89 compared with the
wild-type network. This implies that the probability of informa-

tion transfer along these paths, the product of correlations,
differs by a factor of e3.89 � 47.9. In GluRS, the tRNA is required
for both steps of aminoacylation, but only the amino acid transfer
step is modeled in this study. It may be fortuitous that the
decrease in probability of information transfer in the modified
network agrees so well with the drop in catalytic efficiency.

Comparison of Pretransfer and Posttransfer Networks. The network
representing the system after tRNA aminoacylation is obtained
from a simulation of the posttransfer complex in 2 different
states—GluRS:Glu-tRNAGlu:AMP and GluRS:Glu-tRNAGlu:
HAMP. In the proposed mechanism for the homologous GlnRS
(17), the phosphate of Gln-AMP plays the role of a general base
and a proton is transfered from the 2�-hydroxyl of A76 in the
tRNA to the phosphate with the concomitant formation of singly
protonated AMP (HAMP). This proton could then be transferred
to a histidine in the HIGH motif or to the solvent molecules in
the catalytic pocket to form GluRS:tRNAGlu:Glu-AMP.

To compare the pre- and posttransfer states, the shortest
distance and the suboptimal paths between the experimentally
determined identity elements (16, 18) and A76 at the 3� end of
the tRNA were measured in the networks and are reported in
Table 1. As the charging amino acid is attached to A76 in the
aminoacylation process, this nucleotide serves as the target for
the transmission of the allosteric signal. The shorter the distance,
the larger the correlation of the monomers along the path in the
network and the greater the allosteric signal in the protein:RNA
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complex (see Methods). The shortest distances are always dis-
played by the pretransfer and the GluRS:Glu-tRNAGlu:HAMP
posttransfer state. This indicates that the correlations are larger
in the complex that is modeled closest to the transition state and
decrease as the substrates begin to undock.

A large number of suboptimal paths in the pretransfer network
means that there are many alternative paths in the network with
nearly equivalent distance. This implies that not all residues
along the path are necessary for signaling, but only a few nodes
that occur in a majority of these suboptimal paths are critical for
allostery. These nodes are listed in Table S5, and approximately
half of them are identified in the community analysis. In
addition, several other nodes that appear in the suboptimal paths
are sequence or structural neighbors to nodes appearing in the
community analysis. From this comparison, we conclude that the
intercommunity junctions are crucial regions for the communi-
cation of allosteric signal between A76 and the identity elements.

Network Analysis of tRNA:LeuRS. The mode of tRNALeu recogni-
tion by LeuRS is dramatically different from that of other class
I aaRSs. The anticodon loop no longer makes direct contact with
the protein, and instead, tRNALeu has evolved a long variable
arm that interacts with the CTD of LeuRS. Identity elements on
the variable arm replace those in the anticodon loop and stem
used in other tRNAs, which allows LeuRS to recognize up to 6
different tRNA isoacceptor species inside the cell. Repartition of
communities upon modification of the interface edges (Fig. S10)
clearly demonstrates the shift in recognition to the variable arm
of the tRNA and the loop in the GG arm. In addition, LeuRSs
have evolved an editing domain in the middle of the CP1
insertion that deacylates misaminoacylated tRNA. These differ-
ences in recognition have an impact on the physical network
topology of the LeuRS:tRNALeu complex even though the core
of the community network remains the same.

There are 11 major communities in the pretransfer network as
listed in Table S6. Similar to the GluRS network, the Rossmann
fold forming the core of the catalytic domain in LeuRS splits into
2 communities made from the N-terminus half (C-2) and the
C-terminus half of the Rossmann fold (C-1) as shown in Fig. 4.
The 4HB (C-3) interacts with the anticodon stem and is com-
parable with the community of the 4HJ (C-3) in the GluRS
network. The CTD interacts strongly with identity elements in
the variable arm and with the GG loop, forming 2 communities
(C-4A and C-4B) that are analogous to the ACB domain of the
GluRS network (C-4). The larger CP1 insertion (previously C-5
and C-6) forms independent communities in the network (C-6A,

C-6B, and C-6C). Of these, C-6A in the LeuRS system is
topologically equivalent to C-6 in the GluRS network. The
acquired editing domain forms 3 additional communities (C-
12A, C-12B, and C-12C). The tRNA communities C-8, C-9, and
C-10 in the GluRS network unite into a single community in the
LeuRS network (C-8). Structural overlap of the 2 synthetase
complexes clearly shows that the acceptor stem on tRNALeu now
makes contact with the C-terminus of the Rossmann fold, which
establishes the network connections from C-8 to C-1.

In the pretransfer complex for LeuRS, the main signal for
allostery is from the tRNA variable arm (C-4A) and the dis-
criminator base (C-1) to A76 and the adenylate (interface of C-1
and C-2) in the active site. Similar to the GluRS system, residues
identified in the community network analysis of the LeuRS
system are also highly conserved as shown in Table S7, but are
not conserved across different specificities, except for the HIGH
motif. Some of these residues could also play a role in the
specificity of the aaRS enzyme.

Conclusion
The communication pathways that lead to coordinated motion
between functionally important and distant regions of the pro-
tein:RNA complexes are highly degenerate. In these degenerate
pathways, only a few nodes that occur at intercommunity junc-
tions control the communication within the complex. These
nodes also appear in the majority of the suboptimal paths
between the identity elements on the tRNA and the active site
in the synthetase and are predicted to be important for allostery.
The community picture provides a coarse-grained view of the
network that can be used to compare topologically similar
aaRS:tRNA networks even when some of the domains are
structurally unrelated. The core of both class I aaRS:tRNA
networks compared in this study is formed by the 2 communities
made from the Rossmann fold, whereas equivalent roles are
provided for RNA-binding domains that have evolved later in
these enzymes. Our analysis of the dynamical networks provides
several metrics for comparing the signaling in different states
and/or modifications of the systems and is applicable to other
protein:RNA and protein:protein complexes.

Methods
Molecular Simulations and Evolutionary Analysis. The pretransfer state for
D-GluRS:tRNAGlu:Glu-AMP is based on X-ray structure PDB ID code 1N78 (2). For
the posttransfer states, we used the same initial structure, and Glu was
transferred from AMP to the 2�-O on the tRNA. For the GluRS:Glu-
tRNAGlu:HAMP complex, a proton was transferred from A76 of the tRNA to the
AMP moiety. Similarly, the archaeal LeuRS:tRNALeu pretransfer state was
prepared from PDB ID code 1WZ2 (19). The position of the adenylate Leu-AMP
was based on its position in the active site of bacterial structure PDB ID code
2V0C (20). A small unresolved loop was modeled by using MODELLER (21). All
simulations were performed in the NPT ensemble with CHARMM27 parame-
ters (22) in NAMD2 (23) by using the protein/tRNA protocol in (24). The
normalized covariance (correlation) and standard PCA of the MD simulations
were performed by using CARMA (25). Evolutionary profiles (26) for the
archaeal LeuRS and the bacterial D-GluRS were created by using the MultiSeq
plugin (27) in VMD (28). The organisms that form the evolutionary profiles of
the D-GluRS, tRNAGlu, LeuRS, and tRNALeu are provided in Tables S8 and S9.
Additional details of the methodology and the parameters are provided in
SI Text.

Weighted RNA:Protein Network. A network is defined as a set of nodes with
connecting edges. Amino acid residues, nucleotides, and the AMP substrate
are each represented by a single node. Edges connect pairs of nodes if the
corresponding monomers are in contact, and 2 nonconsecutive monomers are
said to be in contact if any heavy atoms (nonhydrogen) from the 2 monomers
are within 4.5 Å of each other for at least 75% of the frames analyzed. Changes
in the parameters defining the network contacts lead to minor changes in the
community distribution of the network (Fig. S11).

Nearest neighbors in sequence are not considered to be in contact as they
lead to a number of trivial suboptimal paths in the weighted network. The
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dynamical networks are constructed by using data from the final 16 ns of 20-ns
trajectories of the protein:RNA complexes sampled every 50 ps. The dynamical
protein:tRNA network is a weighted network in which the weight (wij) of an
edge between nodes i and j is the probability of information transfer across
that edge as measured by the correlation values between the 2 monomers in
the simulation: wij � �log(Cij). This definition gives a probabilistic interpre-
tation of the lengths of shortest paths and treats strong correlations and
anticorrelations similarly (Fig. 1 and Fig. S2).

Shortest Paths, Betweenness, and Suboptimal Paths. The length of a path Dij

between distant nodes i and j is the sum of the edge weights between the
consecutive nodes (k,l) along the path: Dij � ¥k,lwkl. The shortest distance Dij

0

between all pairs of nodes in the network is found by using the Floyd–Warshall
algorithm. The betweenness of an edge is the number of shortest paths that
cross that edge. The average of all shortest paths, known as the CPL, is a
measure of the network size.

Although the shortest path is the most dominant mode of communication
between the nodes, the number of paths within a certain limit � of the shortest
distance is a measure of the path degeneracy in the network. All suboptimal
paths for communication between the active site and the identity elements
are determined in addition to the shortest path. The tolerance value used for
any alternate path to be included in the suboptimal path was �log(0.5) � 0.69,
which is close to the average protein edge weight. The trends shown in Table
1 remain the same for cutoffs of � � 0.25 and 0.1. On average, with � � 0.5,
about 15% of the paths in Table 1 traverse the same node twice during a single
suboptimal path.

Community Analysis. The physical network of nodes and edges contains
substructures or communities of nodes that are more densely interconnected
to each other than to other nodes in the network. The community structure is
identified by using the Girvan–Newman algorithm (13), which uses a top-
down approach to iteratively remove the edge with the highest betweenness
and recalculate the betweenness of all remaining edges until none of the
edges remain.

The optimum community structure is found by maximizing the modularity

value Q, which is a measure of difference in probability of intra- and inter-
community edges. Q can have a maximum value of 1; large values of Q indicate
better community structure. As the algorithm divides the network into in-
creasingly smaller communities, the modularity score is measured for each
community division, and the maximum value corresponds to the optimal
community distribution of the network. In networks based on the 3D structure
of the protein:tRNA complex presented here, the optimal modularity score is
found to be �0.7. In typical real world networks, the optimal modularity score
is in the range of 0.4–0.7 (29). More recently, a number of algorithms have
been developed that explore different strategies for dividing a network into
community structures, but they are more complex (30, 31).

Information Paths and Community Identification of Residues Important for
Allostery. The shortest paths between pairs of nodes belonging to 2 different
communities are calculated and analyzed for communication across commu-
nities in the network. Of these intercommunity links, all edges connecting any
2 of these communities are identified. Edges with the greatest betweenness
are pinpointed, and the nodes connected by these edges are established as
critical for allosteric signal transduction.

The strength of allosteric signal (A) is defined in this work as indirectly
proportional to the sum of the shortest distances from the identity elements
to A76:

A �
1�i Di, A76

0 .

This value can be used to compare the strength of the allosteric signal between
the wild-type enzyme in different states and/or modifications of the network.
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